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Abstract Today, the practice of returning entities from a knowledge base in re-
sponse to search queries has become widespread. One of the distinctive charac-
teristics of entities is that they are typed, i.e., assigned to some hierarchically
organized type system (type taxonomy). The primary objective of this paper is
to gain a better understanding of how entity type information can be utilized in
entity retrieval. We perform this investigation in two settings: firstly, in an ideal-
ized “oracle” setting, assuming that we know the distribution of target types of
the relevant entities for a given query; and secondly, in a realistic scenario, where
target entity types are identified automatically based on the keyword query. We
perform a thorough analysis of three main aspects: (i) the choice of type taxonomy,
(ii) the representation of hierarchical type information, and (iii) the combination
of type-based and term-based similarity in the retrieval model. Using a standard
entity search test collection based on DBpedia, we show that type information can
significantly and substantially improve retrieval performance, yielding up to 67%
relative improvement in terms of NDCG@10 over a strong text-only baseline in
an oracle setting. We further show that using automatic target type detection, we
can outperform the text-only baseline by 44% in terms of NDCG@10. This is as
good as, and sometimes even better than, what is attainable by using explicit tar-
get type information provided by humans. These results indicate that identifying
target entity types of queries is challenging even for humans and attests to the
effectiveness of our proposed automatic approach.
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1 Introduction

Entities, such as people, organizations, or locations are natural units for orga-
nizing information; they can provide not only more focused responses, but often
immediate answers, to many search queries [36]. Entities can improve the user
experience throughout the entire search process, by enabling techniques of query
assistance, content understanding, result presentation, and contextual recommen-
dations [1]. Indeed, entities play a key role in transforming search engines into
“answer engines” [30]. The pivotal component that sparked this evolution is the
increased availability of structured data published in knowledge bases, such as
DBpedia, Freebase, or the Google Knowledge Graph. Knowledge bases are now
primary sources of information for entity-oriented search [1]. Major web search en-
gines also shaped users’ expectations about search applications; the single-search-
box paradigm has become widespread, and ordinary users have little incentive (or
knowledge) to formulate structured queries. The task we consider in this paper,
referred to as ad hoc entity retrieval [36], corresponds to this setting: returning a
ranked list of entities from a knowledge base in response to a keyword user query.

One of the unique characteristics of entity retrieval that distinguishes it from
document retrieval is that entities are typed. Entity types (or types for short) are se-
mantic categories that group together entities with similar properties. “An analogy
can be made to object-oriented programming, whereby an entity of a type is like
an instance of a class” [1]. Types are typically organized in a hierarchy, which we
will refer to as type taxonomy hereinafter. Each entity in the knowledge base can be
associated with (i.e., is an instance of ) one or more types. For example, using the
DBpedia Ontology, the type of the entity Albert Einstein is Scientist; accord-
ing to Wikipedia’s category system, that entity belongs to the types Theoretical

physicists and People with acquired Swiss citizenship, among others. It is as-
sumed that by identifying the types of entities sought by the query (target types,
from now on), one can use this information to improve entity retrieval perfor-
mance [2, 7, 9, 23, 35, 38, 50]; see Fig. 1 for an illustration. The main high-level
research question we are concerned with in this study is the following: How can

one exploit entity type information to improve ad hoc entity retrieval?

The concept of entity types, while seemingly straightforward, turns out to be
a multifaceted research problem that has not yet been thoroughly investigated in
the literature. Most of the research related with the usage of type information has
been conducted in the context of the INEX Entity Ranking track [10]. There, it
is assumed that the user complements the keyword query with one or more target
types, using Wikipedia’s category system as the type taxonomy. The focus has
been on expanding the set of target types based on hierarchical relationships and
dealing with the imperfections of the type system [2, 9, 23, 35]. Importantly, these
developments have been motivated and driven by the peculiarities of Wikipedia’s
category system. It is not known whether the same methods prove effective, and
even if these issues persist at all, in case of other type taxonomies. One important
contribution of this paper is that we consider and systematically compare multiple
type taxonomies (DBpedia, Freebase, Wikipedia, and YAGO). Additionally, there
is the issue of representing entity type information, more specifically, to what
extent the hierarchy of the taxonomy should be preserved. Yet another question
is how to combine type-based and text-based matching in the retrieval model.
Therefore, the research questions we address are as follows:
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Fig. 1 Illustration of type-aware entity retrieval, where the target types sought by the query
(Left) are matched against the types that are assigned to the given entity in the knowledge
base (Right).

– RQ1 What is the impact of the particular choice of type taxonomy on entity
retrieval performance?

– RQ2 How can one represent hierarchical entity type information for entity
retrieval?

– RQ3 How can one combine term-based and type-based matching for entity
retrieval?

To answer the above questions, we conduct a series of experiments for all possible
combinations of three dimensions:

i. The way term-based and type-based information is combined in the retrieval
model (Sect. 3).

ii. The hierarchical representation of entity type information (Sect. 4.1).
iii. The choice of the type taxonomy (Sect. 4.2).

Using a standard entity retrieval test collection [18], in Sect. 7 we perform a thor-
ough experimental comparison and analysis of all possible configurations across the
above identified three dimensions. Throughout this set of experiments, we make
use of a so-called target type oracle. We assume that there is an “oracle” process
in place that provides us with the correct target types for a given query. We em-
ploy this idealized setting to ensure that our results reflect the full potential of
using type information, without being hindered by the imperfections of an auto-
mated type detector. We find that type information can yield up to 67% relative
improvement in terms of NDCG@10 over a strong text-only baseline (cf. Sect. 7.3).

In a realistic setting, target entity types are not provided, but need to be au-
tomatically identified based on the keyword query. This gives rise to the following
research objective:

– RQ4 How can one automatically determine the target entity types of a query
from a type taxonomy?

We cast the problem of hierarchical target entity type identification as a ranking
task and present both unsupervised and supervised approaches in Sect. 5. Using
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a custom-built test collection, based on DBpedia’s type system, we find that our
supervised approach achieves an NDCG@5 score of 0.6, which represents a relative
improvement of 58% over the best performing baseline (cf. Sect. 8.1).

Finally, we wish to test whether the findings we made using the oracle type
detector also hold when automatic type detection is used instead. We ask the
following question:

– RQ5 How does type-aware entity retrieval perform using automatic target
entity type identification, compared to an “oracle” setting?

We show that using automatic type identification, we can outperform the text-
only baseline by 44% in terms of NDCG@10 (cf. Sect. 8.2.2). Interestingly, these
results are as good as, and sometimes even higher than, what could be achieved
by using explicit target type annotations by humans. This shows that identifying
target entity types of queries is challenging even for humans and attests to the
effectiveness of our proposed automatic approach.

In summary, our work is the first comprehensive study on the usage of en-
tity type information for entity retrieval. This paper makes the following main
contributions:

– Methods for (i) representing types in a hierarchy, (ii) establishing type-based
similarity, and (iii) combining term-based and type-based similarities for ad
hoc entity retrieval.

– A systematic comparison of four type taxonomies (DBpedia, Freebase, Wiki-
pedia, and YAGO) across the above three dimensions of interest.

– Methods and a purpose-built test collection for automatic entity type identifi-
cation.

– An experimental evaluation of automatic target entity type identification both
intrinsically (in isolation) and extrinsically (on the ad hoc entity retrieval task).

All resources developed within this study (including relevance assessments, pre-
computed features, and all the generated rankings) are made publicly available at
https://github.com/iai-group/irj-types.

The remainder of this paper is organized as follows. In Sect. 2, we review related
research. Section 3 introduces type-aware entity retrieval models. Next, in Sect. 4
we discuss alternative ways of representing hierarchical entity type information
and present different type taxonomies. Section 6 describes our experimental setup.
Experimental results are discussed in two parts; we first report results using an
oracle setting in Sect. 7, then we employ automatic target entity type identification
in Sect. 8. Finally, we conclude in Sect. 9.

2 Related Work

The task of entity ranking has been studied in different flavors. Ad hoc entity ranking

takes a keyword query as input and seeks relevant entities to be returned [33,
36]. List search further assumes that sought results are semantically related (e.g.,
“US presidents since 1960” or “Axis powers of World War II”); these semantic
relationships may be specified with a set of target types, or a (small) set of example
entities [5, 10]. Related entity finding, a special case of list search, requests result
entities to be of a specific type and stand in a particular relation with a given
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input entity (e.g., “airlines that currently use Boeing 747 planes”) [6]. Finally,
answers to many questions in question answering are specific entities (e.g., “Who
is the mayor of Berlin?”) [28]. Our interest in this work lies in the usage of type
information for general-purpose entity retrieval against a knowledge base, where
queries may belong to any of the above categories.

2.1 Using Type Information in Entity Ranking

Early work represented type information as a separate field in a fielded entity
model [50]. Demartini et al. [9] additionally expand type information using the
underlying hierarchy. In later works, types are typically incorporated into the re-
trieval method by combining term-based similarity with a separate type-based
similarity component. This combination may be done (i) using a linear interpola-
tion [2, 23, 35] or (ii) in a multiplicative manner, where the type-based component
essentially serves as a filter [7]. Raviv et al. [38] introduce a particular version of
interpolation using Markov Random Fields, linearly aggregating each of the scores
for the joint distribution of the query with entity document, type, and name.
All the mentioned works have consistently reported significant performance im-
provements when a type-based component is incorporated into the (term-based)
retrieval model. However, type-aware approaches have not been systematically
compared to date. We formalize these two general combination strategies, interpo-
lation and filtering, in Sect. 3, and then compare them experimentally in Sect. 7.

Different approaches have measured the type-based similarity by using lexical
type label similarity [45], descriptions of entities [22], overlap ratio of type sets [47],
and even types added as a separated field in multi-field retrieval [8, 50]. In this
work we use a state-of-the-art solution proposed by Balog et al. [2] (cf. Sect. 3.3).

2.2 Type Taxonomies

The choice of a particular type taxonomy is mainly motivated by the problem
setting, depending on whether a wide-coverage type system (like Wikipedia cat-
egories) or a curated, well-designed ontology (e.g., the DBpedia Ontology) is
desired. The most common type system used in prior work is Wikipedia cat-
egories [2, 7, 9, 23, 38]. This is in part for historical reasons, as this was the
underlying type system used at the INEX Entity Ranking track, where type infor-
mation was first exploited. Further choices include the DBpedia Ontology [3, 42],
YAGO types [9, 32, 39, 42], Freebase [26], and schema.org [42]. To the best of our
knowledge, ours is the first study to compare different type taxonomies for entity
retrieval.

2.3 Representations of Type Information

Target types are commonly considered either as a set [9, 23, 35, 38] or as a bag
(weighted set) [2, 39, 44]. Various ways of measuring type-based similarity have
been proposed [8, 22, 45, 47, 50]. In this work we employ a probabilistic approach
that represents entity type information as multinomial probability distributions [2]
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(cf. Sect. 3.3). Within a taxonomy, types are arranged in a hierarchy. (Wikipedia
represents a special case here, as its categories do not form a well-defined “is-a”
hierarchy.) Several approaches have attempted to expand the set of target types
based on the hierarchical structure of the type system [2, 3, 7, 9, 35, 42]. Crucially,
the investigation of type hierarchies has been limited to Wikipedia, and, even there,
mixed results are reported [8, 21, 45, 50]. It remains an open question whether
considering the hierarchical nature of types benefits retrieval performance. We aim
to fill that gap.

2.4 Target Entity Type Identification

The INEX Entity Ranking track [10] and the TREC Entity track [5] both featured
scenarios where target types are provided by the user. When explicit target type
information is lacking, one might attempt to infer types from the keyword query.
This subtask was introduced by Vallet and Zaragoza [44] as the entity type ranking

problem. They extract entity mentions from the set of top relevant passages, then
consider the types associated with the top-ranked entities using various weighting
functions. Kaptein et al. [24] similarly use a simple entity-centric model. Manu-
ally assigned target types tend to be more general than automatically identified
ones [23]. Having a hierarchical structure, therefore, makes it convenient to assign
more general types. In [3], a hierarchical version of the target entity type iden-

tification task is addressed using the DBpedia Ontology and language modeling
techniques. One approach uses an entity-centric strategy. Another one builds a
textual type representation by concatenating the descriptions of all its assigned
entities. We present a detailed description of these models in Sects. 5.1 and 5.2,
and further expand on them in Sect. 5.3. Sawant and Chakrabarti [39] focus on
telegraphic queries and assume that each query term is either a type hint or a
“word matcher.” They consider multiple interpretations of the query and tightly
integrate type detection within the ranking of entities. Their approach further re-
lies on the presence of a large-scale web corpus. We consider target entity types
identification using an oracle process, based on the set of known relevant entities
(cf. Sect. 6.2), as well as using automatic methods (cf. Sect. 5).

2.5 Entity Type Assignments

A further complicating issue is that type information associated with entities in the
knowledge base is incomplete, imperfect, or missing altogether for some entities.
Gangemi et al. [13] distinguish between extensional coverage, i.e., the number of
typed resources, and intensional coverage, i.e., conceptual completeness. Automatic
typing of entities is a possible solution for alleviating some of these problems. For
example, approaches to extend entity type assignments in DBpedia include min-
ing associated Wikipedia articles for wikilink relations [34], patterns over logical
interpretations of the deeply parsed natural language definitions [13], or linguistic
hypotheses about category classes [12]. Several works have addressed entity typing
over progressively larger taxonomies with finer-grained types [11, 16, 27, 37, 48].
Regarding the task of detecting and typing emerging entities, having fine-grained
types for new entities is of particular importance for informative knowledge [26, 32].
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Table 1 Glossary of the notation used in this paper.

Symbol Description

e Entity (e ∈ E)
E Set of all entities in the knowledge base
Et Set of all entities typed with t
q Query
t Type (t ∈ T )
T Set of all types in the taxonomy
Te Set of all types assigned to e (Te ⊂ T )
w Term (word)

a(e, t) Entity-type association weight for e and t
f(w, e) Frequency of w in (the description of) e
n(t, e) Entity-type association importance for e and t
π(t) Parent type of t in the taxonomy
Relq Set of relevant entities for q according to the ground truth
rel(q, e) Relevance level of e for q according to the ground truth
Rk(q) Set of top-k ranked entities for q
scoreM (e, q) Retrieval score of entity e for query q, given by model M
scoreM(φi)

(t, q) Target type score of t for query q, given by model M , with array

(φi) of underlying retrieval model parameters (omitted if empty)
w2v(w) Pre-trained word2vec word embedding vector for w
vw2v
content Centroid of word2vec vectors for all content words in v

1(p) Binary indicator function which returns 1 iff p is true
θe Entity types distribution for e
θq Target types distribution for q
λt Weight of type-based component in interpolation model
k Target types ranking cutoff in strict filtering model

3 Type-aware Entity Retrieval

In this section, we formally describe the type-aware entity retrieval models we will
be using for investigating the research questions stated in Sect. 1. Our contribu-
tions do not lie in this part; the techniques we present were shown to be effective
in prior research. We refer to Table 1 for the notation used in this paper.

We formulate our retrieval task in a generative probabilistic framework. Given
an input query q, we rank entities e according to

P (e|q) ∝ P (q|e)P (e) . (1)

When uniform entity priors are assumed, the final ranking of entities boils down
to the estimation of P (q|e). We consider the query in the term space as well as
in the type space. Hence, we write q = (qw, qt), where qw holds the query terms
(words) and qt holds the target types. Two ways of factoring the probability P (q|e)
are presented in Sect. 3.1. All models share two components: term-based similar-
ity, P (qw|e), and type-based similarity, P (qt|e). These are discussed in Sects. 3.2
and 3.3, respectively.
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3.1 Retrieval Models

We present two alternative approaches for combining term-based and type-based
similarity.

3.1.1 Filtering

Assuming conditional independence between the term-based and type-based com-
ponents, the final score becomes a multiplication of the components:

P (q|e) = P (qw|e)P (qt|e) . (2)

This approach is a generalization, among others, of the one used in [7] (where the
term-based information itself is unfolded into multiple components, considering
not only language models from textual context but also estimations of entity co-
occurrences). We consider two specific instantiations of this model:

– Strict filtering, where P (qt|e) is 1 if the sets of target types and entity types
have a non-empty intersection, and is 0 otherwise.

– Soft filtering, where P (qt|e) ∈ [0..1] and is estimated using the approach de-
tailed in Sect. 3.3.

3.1.2 Interpolation

Alternatively, a mixture model may be used, which allows for controlling the im-
portance of each component. Nevertheless, the conditional independence between
qw and qt is still imposed by this model:

P (q|e) = (1− λt)P (qw|e) + λtP (qt|e) , (3)

where P (qt|e) is estimated using the approach detailed in Sect. 3.3. Examples of
using the interpolation model include [2, 23, 35, 38].

3.2 Term-based Similarity

We base the estimation of the term-based component, P (qw|e), on statistical lan-
guage modeling techniques since they have shown to be an effective approach in
prior work, see, e.g., [2, 4, 7, 17, 23]. Specifically, we employ the Sequential Depen-
dence Model (SDM) [29]. Following [18], we set the default parameters 0.8, 0.1,
and 0.1 for terms, ordered, and unordered bigram, respectively. We note that the
term-based component is not the focus of this work; any other approach could also
be plugged in (provided that the retrieval scores are mapped to probabilities).
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3.3 Type-based Similarity

Rather than considering types simply as a set, we assume a distributional repre-
sentation of types, also referred to as bag-of-types. Namely, a type in the bag may
occur with repetitions, naturally rendering it more important. Following [2], we
represent type information as a multinomial probability distribution over types,
both for queries and for entities. Specifically, let θq denote the target type distri-
bution for the query q (such that

∑
t P (t|θq) = 1). We assume that there is some

mechanism in place that estimates this distribution; in our experiments, we will
rely on an “oracle” that provides us exactly with this information (cf. Sect. 6.2).
Further, let θe denote the target type distribution for entity e. We assume that a
function n(t, e) is provided, which returns 1 if e is assigned to type t, otherwise
0. We present various ways of setting n(t, e) based on the hierarchy of the type
taxonomy in Sect. 4. We note that n(t, e) is not limited to having a binary value;
this quantity could, for example, be used to reflect how important type t is for the
given entity e. We use a multinomial distribution to allow for such future exten-
sions. Based on these raw counts, the type-based representation of an entity e is
estimated using Dirichlet smoothing:

P (t|θe) =
n(t, e) + µP (t)∑
t′ n(t′, e) + µ

, (4)

where the background type model is obtained by a maximum-likelihood estimate:

P (t) =

∑
e′ n(t, e′)∑

t′
∑
e′ n(t′, e′)

. (5)

The smoothing parameter µ in Eq. (4) is set to the average number of types
assigned to an entity. In Eqs. (4) and (5), t′ is any type in the taxonomy (t′ ∈ T )
and e′ is any entity in the knowledge base (e′ ∈ E).

With both θq and θe in place, we estimate type-based similarity using the
Kullback-Leibler (KL) divergence of the two distributions:

P (qt|e) = z (max
e′

KL(θq ‖ θe′)−KL(θq ‖ θe)) , (6)

where z is a normalization factor:

z = 1
/∑

e

max
e′

(KL(θq ‖ θe′)−KL(θq ‖ θe)) .

Note that the smaller the divergence the more similar the distributions are, there-
fore in Eq. (6) we subtract it from the maximum KL-divergence, in order to obtain
a probability distribution. For further details we refer to [2].

4 Entity Type Representation

This section introduces alternative ways of representing hierarchical entity type
information (Sect. 4.1) and the different type taxonomies that are considered in
our experimental evaluation (Sect. 4.2).
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Fig. 2 Alternative ways of representing entity-type assignments with respect to the type
taxonomy. The dashed arrows point to the types that are assigned to entity e. The root node
of the taxonomy is labeled with t0.

4.1 Hierarchical Entity Type Representation

We consider different ways of representing hierarchical entity type information.
Specifically, we investigate how to set the quantity n(t, e), which is needed for esti-
mating type-based similarity between target types of the query and types assigned
to the entity in the knowledge base. Before proceeding further, let us introduce
some terminology and notation.

– T is a type taxonomy that consists of a set of hierarchically organized entity
types, and t ∈ T is a specific entity type.

– E is the set of all entities in the knowledge base, and e ∈ E is a specific entity.
– Te is the set of types that are assigned to the entity e in the knowledge base.

We refer to this as a set of assigned types. Note that Te might be an empty set.

We impose the following constraints on the type taxonomy.

i. There is a single root node t0 that is the ancestor of all types (e.g., <owl:Thing>).
Since all entities belong to this type, it is excluded from the set of assigned
types by definition.

ii. We restrict the type taxonomy to subtype-supertype relations; each type t has
a single parent type denoted as π(t).

iii. Type assignments are transitive, i.e., an entity that belongs to a given type
also belongs to all ancestors of that type: t ∈ Te ∧ π(t) 6= t0 =⇒ π(t) ∈ Te.

We further note that an entity might belong to multiple types under different
branches of the taxonomy. Assume that ti and tj are both types of e. It might be
then that their nearest common ancestor in the type hierarchy is t0.

While Te holds the types assigned to entity e, there are multiple ways of turning
it into a numerical value, n(t, e), which reflects the type’s importance with respect
to the given entity. This importance is taken into account when building the type-
based entity representation in Eq. (4). In this work, we treat all types equally
important for an entity, i.e., use binary values for n(t, e).

We consider the following three options for representing hierarchical type infor-
mation; see Fig. 2 for an illustration. In our definitions, we use 1(x) as an indicator
function, which returns the value 1 if condition x is true and returns 0 otherwise.

– Types along path-to-top: It counts all types that are assigned to the entity
in the knowledge base, excluding the root (from constraint (iii) it follows that
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Table 2 Overview of normalized type taxonomies and their statistics. The top block is about
the taxonomy itself; the bottom block is about type assignments of entities.

Type system DBpedia Freebase Wikipedia
categories

YAGO

Number of types 713 1,719 423,636 568,672
Number of top-level types 22 92 27 61
Number of leaf-level types 561 1,626 303,956 549,754
Height 7 2 35 19

Number of types used 408 1,626 359,159 314,632
Number of entities with type 4.87M 3.27M 3.52M 2.88M
Avg. number of types per entity 2.8 4.4 20.8 13.4
Mode depth 2 2 11 4

Te contains all the types in the path to the top-level nodes):

n(t, e) = 1
(
t ∈ Te

)
.

– Top-level type(s): Only top-level types are considered for an entity, that is,
types that have the root node as their parent:

n(t, e) = 1
(
t ∈ Te ∧ π(t) = t0

)
.

– Most specific type(s): From each path, only the most specific type is consid-
ered for the entity:

n(t, e) = 1
(
t ∈ Te ∧ @ t′ ∈ Te : π(t′) = t

)
.

Even though there may be alternative representations, these three are natural
ways of encoding hierarchical information.

4.2 Entity Type Taxonomies

In this paper we study multiple type taxonomies from various knowledge bases:
DBpedia, Freebase, Wikipedia, and YAGO. These vary a lot in terms of hierarchi-
cal structure and in how entity-type assignments are recorded. We normalize these
type taxonomies to a uniform structure, adhering to the constraints specified in
Sect. 4.1. Table 2 presents an overview of the type systems (after normalization).
The number of type assignments are counted according to the representation along
path-to-top. Properties of the four type systems and details of the normalization
process are discussed below.

4.2.1 Type Taxonomies

Wikipedia categories. The Wikipedia category system, developed and extended by
Wikipedia editors, consists of textual labels known as categories. This catego-
rization is not a well-defined “is-a” hierarchy, but a graph; a category may have
multiple parent categories and there might be cycles along the path to ances-
tors [24]. Also, categories often represent only loose relatedness between articles;
category assignments are neither consistent nor complete [10].
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We transformed the Wikipedia category graph, consisting of over 1.16M cat-
egories, into a type taxonomy as follows. First, we selected a set of 27 top-level
categories covering most of the knowledge domains.1 These became the top-level
nodes of the taxonomy, all with a single common root type <owl:Thing>. All super-
categories that these selected top-level categories might have in the graph were
discarded. Second, we removed multiple inheritances by selecting a single parent
per category. For this, we considered the population of a category to be the set
of its assigned articles. Each category was linked in the taxonomy with a single
parent in the graph whose intersection between their populations is the maximal
among all possible parents; in case of a tie, the most populated parent was chosen.
Under this criterion, and for the purpose of understanding hierarchical relations,
any category without a parent was discarded. Lastly, from this partial hierarchy
(which is still a graph, not a tree), we obtained the final taxonomy by performing
a depth-first exploration from each top-level category, and avoiding to add those
arcs that would introduce cycles. This depth-first approach was previously used
by Fossati et al. [12] for enforcing taxonomic constraints on Wikipedia categories.
The resulting taxonomy contains over 423k categories and reaches a maximum
depth of 35 levels.2

DBpedia ontology. The DBpedia Ontology is a well-designed hierarchy since its in-
ception; it was created manually by considering the most frequently used infoboxes
in Wikipedia. It continues to be properly curated to address some weaknesses of
the Wikipedia infobox space. While the DBpedia Ontology is clean and consistent,
its coverage is limited to entities that have an associated infobox. It consists of
713 classes, including the root, organized in a hierarchy of 7 levels.

YAGO taxonomy. YAGO is a huge semantic knowledge base, derived from Wiki-
pedia, WordNet, and GeoNames [41]. Its type classification schema is constructed
by taking leaf categories from the category system of Wikipedia and then us-
ing WordNet synsets to establish the hierarchy of classes. The result is a deep
subsumption hierarchy, consisting of over 568k classes. We work with the YAGO
taxonomy from the current version of the ontology (3.0.2). We normalized it by
adding a root node, <owl:Thing>, as a parent to every top-level type.

Freebase types. Freebase has a two-layer categorization system, where types on the
bottom level are grouped under high-level domains. We used the latest public Free-
base dump (2015-03-31), discarding domains meant for administering the Freebase
service itself (e.g.; base, common). Additionally, we made <owl:Thing> the common
root of all the domains, and finally obtained a taxonomy of 1,719 types.

1 The selected top-level categories are the main categories for each section of the por-
tal https://en.wikipedia.org/wiki/Portal:Contents/Categories. (As an alternative, we
also considered the categories from https://en.wikipedia.org/wiki/Category:Main_topic_
classifications, and found that it comprises a similar category selection).

2 We have confirmed experimentally that enforcing the Wikipedia category graph to satisfy
the taxonomical constraints does not hurt retrieval performance. In fact, it is the opposite: it
results in small, but statistically significant improvements [14].
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4.2.2 Entity-Type Assignments

Now that we have presented the four type taxonomies, we also need to discuss
how type assignments of entities are obtained. We use DBpedia 2015-10 as our
knowledge base, which makes DBpedia types, Wikipedia categories, and YAGO
type assignments readily available. For the fourth type taxonomy, Freebase, we
followed same-as links from DBpedia to Freebase (which exist for 95% of the
entities in DBpedia) and extracted type assignments from Freebase. It should
be noted that entity-type assignments are provided differently for each of these
taxonomies; DBpedia and Freebase supply a single (most specific) instance type
for an entity, Wikipedia assignments include multiple categories for a given entity
(without any restriction), while YAGO adheres to the representation along path.
We treat all entity-type assignments transitively, adhering to constraint (iii) in
Sect. 4.1.

5 Target Entity Type Identification

Target entity types may be provided by the user explicitly as part of the search
request, for example, via faceted user interfaces. Often, however, users would prefer
to use simple keyword queries as input. In that case, target entity types need to
be identified automatically based on the keyword query. In this section, we discuss
how to assign target entity types to queries from a type taxonomy.

As our starting point, we take the definition of the hierarchical target type iden-

tification (HTTI) task, as introduced in [3]: “finding the single most specific type
within the ontology that is general enough to cover all relevant entities.” We point
out two major limitations with this definition and suggest ways to overcome them.

First, it is implicitly assumed that every query must have a single target type,
which is not particularly useful in practice. Take, for example, the query “finland
car industry manufacturer saab sisu,” where both Company and Automobile are
valid types. We shall allow for possibly multiple main types, if they are sufficiently
different, i.e., lie on different branches in the taxonomy. Second, it can happen—
and in fact it does happen for 33% of the queries considered in [3]—that a query
cannot be mapped to any type in the given taxonomy (e.g., “Vietnam war facts”).
However, those queries were simply ignored in [3]. Instead, we shall allow a query
not to have any type (or, equivalently, to be tagged with a special NIL-type).
This relaxation means that we can now take any query as input. Our revised task
definition is thus as follows.

Definition 1 Hierarchical target entity type identification (HTTIv2 ) is the task
of finding the main target types of a query, from a type taxonomy, such that (i)
these correspond to the most specific category of entities that are relevant to the
query, and (ii) main types cannot be on the same branch in the taxonomy. If no
matching type can be found in the taxonomy then the query is assigned a special
NIL-type.

Let us note that detecting NIL-types is a separate task on its own account, which
we are not addressing in this paper. For now, the importance of the NIL-type
distinction is restricted to how the query annotations are performed.
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5.1 Entity-Centric Model

The entity-centric model can be regarded as the most common approach for de-
termining the target types for a query, see, e.g., [3, 24, 44]. This model also fits the
late fusion design pattern for object retrieval [49]. The idea is simple: first, rank
entities based on their relevance to the query, then look at what types the top-K
ranked entities have. The final score for a given type t is the aggregation of the
relevance scores of entities with that type. Formally:

scoreEC(M,K)
(t, qw) =

∑
e∈RK(qw)

scoreM (e, qw) a(e, t),

where RK(qw) is the set of top-K ranked entities for the keyword query qw. The
retrieval score of entity e is denoted by scoreM (e, qw). In our experiments, we
consider both Language Models and BM25 as the underlying entity retrieval model
M . The rank cut-off threshold K is set empirically. The entity-type association
weight, a(e, t), is set uniformly across entities that are typed with t, and is 0
otherwise:

a(e, t) =

{ 1
|Et|

∑
e′ 1(e′ ∈ Et) e ∈ Et

0 otherwise .

We denote this entity-centric target type score by ECM,K(t, qw).

5.2 Type-Centric Model

Alternatively, one can also build for each type a direct term-based representation
(pseudo type description document), by aggregating descriptions of entities that
belong to the given type. Then, those type representations can be ranked much
like documents. This model has been presented in [3] using Language Models, and
has been generalized to arbitrary retrieval models (and referred to as the early
fusion design pattern for object retrieval) in [49]. The pseudo-frequency of word
w given type t is defined as:

f̃(w, t) =
∑
e

f(w, e) a(e, t) , (7)

where f(w, e) is the frequency of the term w in (the description of) entity e and
a(e, t), as before, denotes the entity-type association weight. The relevance score
of a type for a given query qw = 〈q1, . . . , qn〉 is then calculated as the sum of the
individual query term scores:

scoreTC(M)
(t, qw) =

n∑
i=1

scoreM (qi, f̃ , ϕ)

where scoreM (qi, f̃ , ϕ) is the underlying term-based retrieval model M (e.g., LM
or BM25), parameterized by ϕ. This model assigns a score to each query term qi,
based on the word pseudo-frequencies f̃ . We denote this type-centric target type
score by TCM (t, qw).
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5.3 Learning to Rank

The entity-centric and type-centric models capture different aspects of the task,
and it is therefore sensible to combine the two. While this idea has been suggested
in [3], to the best of our knowledge, our work is the first to realize it, using a
learning-to-rank (LTR) approach [15]. In addition, there are other signals that
one could leverage, including taxonomy-driven features and type label similarities.
Table 3 summarizes the features we use for target entity type identification.

5.3.1 Knowledge base features

We assume that a knowledge base provides a type system of reference along with
entity-type mappings. In this setting, features related to the hierarchy of the type
taxonomy emerge naturally. In particular, instead of using absolute depth metrics
of a type like in [43], we use a normalized depth with respect to the height of the
taxonomy (feature #13). We also take into account the number of children and
siblings of a type (features #14 and #15). Intuitively, the more specific a type,
the deeper it is located in the type taxonomy, and the less its number of children,
while the more its number of siblings. Hence all three of these features capture how
specific a type is according to its context in a type taxonomy. The type coverage
(feature #16) is also directly related to the intuition of type specificity; the more
general the type, the larger number of entities it tends to cover.

5.3.2 Type label features

We consider several signals for measuring the similarity between the surface form
of the type label and the query. The type label length (feature #17) and the
IDF-related statistics (features #18-19) are closely related to type specificity. The
Jaccard similarities (features #20-21) capture shallow linguistic similarities by n-
gram matches between the set of n consecutive terms in the query and the type
labels, where n ≤ 2, since the textual phrases in any of these labels are expected
to be short. In particular, the bigram match (n = 2) makes sense for capturing
some typical type label patterns, e.g., 〈adjective〉 〈noun〉 in German physicists. A
more constrained version, defined in feature #22, measures the query-type Jaccard
similarity over single terms (n = 1), which are nouns.

We use pre-trained word embeddings provided by the word2vec toolkit [31].
However, we only consider content words (linguistically speaking, i.e., nouns, ad-
jectives, verbs, or adverbs). Feature #23 captures the compositional nature of
words in type labels:

SIMAGGR(t, q) = cos(qw2v
content, t

w2v
content) ,

where the query and type vectors are taken to be the w2v centroids of their content
words. Feature #24 measures the pairwise similarity between content words in the
query and the type label:

SIMMAX(t, q) = max
wq∈q,wt∈t

cos(w2v(wq), w2v(wt)) ,

where w2v(w) denotes the word2vec vector of term w. Feature #25 SIMAV G(t) is
defined analogously, but using avg instead of max.



16 Daŕıo Garigliotti et al.

Table 3 Features for learning to rank target types.

# Feature Description Kind Value

Baseline features
1-5 ECBM25,K(t, q) Entity-centric score (cf. Sect. 5.1) of type t for query q, with

K ∈ {5, 10, 20, 50, 100} using BM25
entity-centric [0..∞)

6-10 ECLM,K(t, q) Entity-centric score (cf. Sect. 5.1) of type t for query q, with
K ∈ {5, 10, 20, 50, 100} using LM

entity-centric [0..1]

11 TCBM25(t, q) Type-centric score (cf. Sect. 5.2) of type t for query q, using BM25 type-centric [0..∞)
12 TCLM (t, q) Type-centric score (cf. Sect. 5.2) of type t for query q, using LM type-centric [0..1]

Knowledge base features
13 DEPTH(t) The hierarchical level of type t, normalized by the taxonomy depth taxonomy [0..1]
14 CHILDREN(t) Number of children of type t in the taxonomy taxonomy {0, . . . ,∞}
15 SIBLINGS(t) Number of siblings of type t in the taxonomy taxonomy {0, . . . ,∞}
16 ENTITIES(t) Number of entities assigned to type t coverage {0, . . . ,∞}

Type label features
17 LENGTH(t) Length of (the label of) type t in words statistical {1, . . . ,∞}
18 IDFSUM(t) Sum of IDF for terms in (the label of) type t statistical [0..∞)
19 IDFAV G(t) Avg of IDF for terms in (the label of) type t statistical [0..∞)
20-21 JTERMSn(t, q) Query-type Jaccard similarity for sets of n-grams, for n ∈ {1, 2} linguistic [0..1]
22 JNOUNS(t, q) Query-type Jaccard similarity using only nouns linguistic [0..1]
23 SIMAGGR(t, q) Cosine sim. between the q and t word2vec vectors aggregated over all

terms of their resp. labels
distributional [0..1]

24 SIMMAX(t, q) Max. cosine similarity of word2vec vectors between each pair of query (q)
and type (t) terms

distributional [0..1]

25 SIMAV G(t, q) Avg. of cosine similarity of word2vec vectors between each pair of query
(q) and type (t) terms

distributional [0..1]

Table 4 Query categories in the DBpedia-Entity collection.

Category Description Example

INEX-LD General keyword queries “Guitar origin blues”
ListSearch Entity list queries “Products of Medimmune, Inc.”
QALD-2 Natural language queries “Who was called Scarface?”
SemSearch ES Named entity queries “Brooklyn bridge” or “Ashley Wagner”

6 Experimental Setup

We base our experiments on the DBpedia knowledge base (version 2015-10). DB-
pedia [25], as a central hub in the Linked Open Data cloud, provides a large
repository of entities, which are mapped—directly or indirectly; cf. Sect.4.2.2—to
each of the type taxonomies of interest.

6.1 Test Collection

Our experimental platform is based on the DBpedia-Entity v2 test collection3

developed in [18]. The dataset contains 467 queries, synthesized from various
entity-related benchmarking evaluation campaigns. These range from short key-
word queries to natural language questions; see Table 4.

6.2 Target Entity Types Oracle

Throughout our first set of experiments (in Sect. 7), we make use of a so-called
target entity types oracle. We assume that there is an “oracle” process in place that
provides us with the (distribution of) correct target types for a given query. This

3 http://tiny.cc/dbpedia-entity
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Table 5 Statistics of the target entity types oracle.

Type system DBpedia Freebase Wikipedia
categories

YAGO

Number of types used 213 716 10,852 10,080
Number of queries with type 451 478 469 470
Avg. number of types per query 3.05 19.10 31.32 54.84
Mode depth 4 2 10 6
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Fig. 3 Distribution of oracle target types within hierarchical levels of the DBpedia, Wikipedia,
and YAGO taxonomies. Freebase is omitted since all target types are on the leaf level, i.e.,
have depth = 2.

corresponds to the setting that was employed at previous benchmarking campaigns
(such as the INEX Entity Ranking track [10] and the TREC Entity track [5]),
where target types are provided explicitly as part of the topic definition. We employ
this idealized setting to ensure that our results reflect the full potential of using
type information, without being hindered by the imperfections of an automated
type detector.

For a given query q, we take Tq =
⋃
e∈Relq Te, the union of all types of all entities

that are judged relevant for that query. Each of these types t ∈ Tq becomes a target
type, and its probability P (t|θq) is set proportional to the number of relevant
entities that have that type. Formally, the oracle O scores target types as follows:

scoreO(t, q) =
∑

e∈Relq∩Et

rel(e, q) , (8)

where Et denotes the set of entities that are assigned to type t and rel(e, q) is the
relevance score of entity e for query q, according to the ground truth. Then, the
oracle target distribution is given by:

P (t|θq) =
scoreO(t, q)∑
t′ scoreO(t′, q)

. (9)

Table 5 summarizes the statistics of target entity types obtained by the oracle
for each type taxonomy. As it can be seen, deeper taxonomies (Wikipedia cate-
gories and YAGO) have larger average number of types per query, which is similar
to what we observed for entity type assignments in Table 2. For Freebase, the
number of target types appears disproportionately large compared to the entity
type assignments in Table 2. Figure 3 shows how the target types are distributed
hierarchically within each taxonomy.
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6.3 Entity Retrieval Models

As our baseline, we use a term-based approach, specifically the Sequential De-
pendence Model (SDM) [29], which we described in Sect. 3.2. We compare three
type-aware retrieval models (cf. Sect. 3.1): strict filtering, soft filtering, and in-
terpolation. For the latter, we perform a sweep over the possible type weights
λt ∈ [0, 1] in steps of 0.05, and use the best performing setting when comparing
against other approaches. (Automatically estimating the λt parameter is outside
the scope of this work.)

6.4 Target Entity Type Identification Models

For the entity-centric (Sect. 5.1) and type-centric (Sect. 5.2) models, the Language
Modeling (LM) approach uses Dirichlet prior smoothing with the smoothing pa-
rameter set to 2000; for BM25, we use k1 = 1.2 and b = 0.75. For the LTR
approach (Sect. 5.3), we employ the Random Forest algorithm for regression as
our supervised ranking method. We set number of trees (iterations) to 1000, and
the maximum number of features in each tree, m, to (the ceil of the) 10% of the
size of the feature set.

6.5 Type Assignments

In the default setting, we include all entities from the knowledge base and use the
original set of relevance assessments. By doing so, some entities and queries do
not have types assigned from one or more taxonomies. Therefore, we introduce an
additional experimental setting, referred to as 1TT, to ensure that the differences
we observe are not a result of missing type assignments.

In the 1TT setting, for each type taxonomy, we restrict our set of entities to
those that have at least one type assigned in the taxonomy. We also restrict the set
of queries to those that have target types in that type system; queries without any
relevant results (as a consequence of these restrictions) are filtered out. This leaves
us with a total of 446 queries for DBpedia, 454 for Freebase, 463 for Wikipedia,
and 450 for YAGO.

6.6 Test Collection of Target Entity Types

We build a test collection for the revised hierarchical target type identification
task (cf. Sect. 5). Having the DBpedia Ontology (version 2015-10) as our type
taxonomy, we collect relevance labels via crowdsourcing for all the 485 queries in
the DBpedia-Entity v1 collection [4] (which is a superset of the DBpedia-Entity
v2 queries that we use for evaluating entity ranking).

A pool of target entity types is constructed from four baseline methods, tak-
ing the top 10 types from each: entity-centric (cf. Sect. 5.1) using K=100, and
type-centric (cf. Sect. 5.2), with both BM25 and LM as underlying retrieval meth-
ods. Additionally, we included all types returned by the target entity types oracle
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Fig. 4 Distribution of the number of main target types in our test collection.

(cf. Sect. 6.2), to ensure that all reasonable types are considered when collecting
human annotations.

We obtained target type annotations via the CrowdFlower crowdsourcing plat-
form. Specifically, crowd workers were presented with a search query (along with
the narrative from the original topic definition, where available), and a list of
candidate types, organized hierarchically according to the taxonomy. We asked
them to “select the single most specific type, that can cover all results the query
asks for” (in line with [3]). If none of the presented types are correct, they were
instructed to select the “None of these types” (i.e., NIL-type) option.

The annotation exercise was carried out in two phases. In the first phase,
we sought to narrow down our pool to the most promising types for each query.
Since the number of candidate types for certain queries was fairly large, they
were broken down to multiple micro-tasks, such that for every top-level type,
all its descendants were put in the same micro-task. Each query-type batch was
annotated by 6 workers. In the second phase, all candidate types for a query were
presented in a single micro-task; candidates include all types that were selected
by at least one assessor in phase one, along with their ancestors up to the top
level of the hierarchy. Each query was annotated by 7 workers. The Fleiss’ Kappa
inter-annotator agreement for this phase was 0.71, which is considered substantial.

Note that according to our HTTIv2 task definition, main target types of a query
cannot lie on the same path in the taxonomy. To satisfy this condition, if two types
were on the same path, we merged the more specific type into the more generic
one (i.e., the more generic type received all the “votes” of the more specific one).
This affected 120 queries. Figure 4 shows the distribution of queries according to
the number of main types. In the resulting collection, 280 of all queries (57.73%)
have a single target type, while the remainder of them have multiple target types.
It is noticeable that as the number of main types increases, so does the proportion
of NIL-type annotations.

7 Results using Oracle Target Entity Type Identification

In this section, we present evaluation results for all combinations of the three
proposed dimensions: type taxonomies, type representation modes, and retrieval
models. When discussing the results, we use the term configuration to refer to a
particular combination of type taxonomy, type representation, and retrieval model.
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Table 6 Entity retrieval performance using oracle target types, returning all entities from the
knowledge base (ALL). For the interpolation model, λt is value of the best empirically found
interpolation parameter. Performance is measured in terms of NDCG@10 and NDCG@100.
Statistical significance, tested using a two-tailed paired t-test at p < 0.05 and p < 0.001, is
denoted by † and ‡, respectively.

Model
Strict filtering Soft filtering Interpolation

@10 @100 @10 @100 @10 @100 λt

Baseline [29] 0.4185 0.5143 0.4185 0.5143 0.4185 0.5143 -

DBpedia
Along path 0.3998 0.4947 0.4440† 0.5279† 0.4549‡ 0.5337‡ 0.25
Top-level 0.3998 0.4947 0.4307 0.5187 0.4414‡ 0.5253‡ 0.25
Most specific 0.4389 0.5186 0.4404† 0.5259† 0.4579‡ 0.5366‡ 0.15

Freebase
Along path 0.4113 0.5003 0.4766‡ 0.5486‡ 0.4702‡ 0.5453‡ 0.35
Top-level 0.4113 0.5003 0.4758‡ 0.5461‡ 0.4690‡ 0.5428‡ 0.40
Most specific 0.4306 0.5127 0.4734‡ 0.5467‡ 0.4664‡ 0.5432‡ 0.35

Wikipedia
Along path 0.4310‡ 0.5170 0.4256 0.5215 0.4283‡ 0.5211‡ 0.05
Top-level 0.1102 0.3243 0.2707 0.4271 0.4185 0.5143 0.00
Most specific 0.5362‡ 0.5775‡ 0.4742‡ 0.5506‡ 0.4603‡ 0.5432‡ 0.25

YAGO
Along path 0.3814 0.4770 0.4718‡ 0.5483‡ 0.4647‡ 0.5421‡ 0.35
Top-level 0.3814 0.4770 0.4186 0.5129 0.4314‡ 0.5223‡ 0.25
Most specific 0.4235 0.5038 0.4685‡ 0.5492‡ 0.4561‡ 0.5429‡ 0.20

Recall that we distinguish between two settings (cf. Sect. 6.5): ranking all
entities in the knowledge base (ALL) and considering only entities that have types
assigned to them in a given type taxonomy (1TT). Tables 6 and 7 show results
corresponding to these two settings, respectively. Our main evaluation metric is
normalized discounted cumulative gain with a cutoff of 10 (NDCG@10); we also
report on NDCG@100. We test statistical significance to measure our confidence in
rejecting the null hypothesis that states that our improvements occur by chance.
Specifically, we use a two-tailed paired t-test at p < 0.05 and p < 0.001, denoted
by † and ‡, respectively. For an easier visual inspection, the NDCG@10 scores are
also plotted in Fig. 5, where the red line corresponds to the term-based baseline.

7.1 Type Taxonomy

Let us begin with our first research question (RQ1), which concerns the impact of
the particular choice of type taxonomy.

– RQ1 What is the impact of the particular choice of type taxonomy on entity
retrieval performance?

It is clear that Wikipedia, in combination with the Most specific type represen-
tation, performs best for both settings (ALL and ITT, Figs. 5(c) and 5(g)), and
yields substantial and highly significant improvements for all three retrieval mod-
els. As for the other two type representations for Wikipedia, performance slightly
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Table 7 Entity retrieval performance using oracle target types, considering only entities that
have types assigned to them in the respective type taxonomy (1TT). For the interpolation
model, λt is value of the best empirically found interpolation parameter. Performance is mea-
sured in terms of NDCG@10 and NDCG@100. Statistical significance, tested using a two-tailed
paired t-test at p < 0.05 and p < 0.001, is denoted by † and ‡, respectively.

Model
Strict filtering Soft filtering Interpolation

@10 @100 @10 @100 @10 @100 λt

DBpedia
Baseline [29] 0.3036 0.4119 0.3036 0.4119 0.3036 0.4119 -
Along path 0.4600‡ 0.5079‡ 0.4353‡ 0.4894‡ 0.4172‡ 0.4746‡ 0.65
Top-level 0.4600‡ 0.5079‡ 0.4196‡ 0.4779‡ 0.4141‡ 0.4725‡ 0.70
Most specific 0.5092‡ 0.5393‡ 0.4309‡ 0.4864‡ 0.4075‡ 0.4696‡ 0.55

Freebase
Baseline [29] 0.3322 0.4403 0.3322 0.4403 0.3322 0.4403 -
Along path 0.4513‡ 0.5106‡ 0.4471‡ 0.5085‡ 0.4408‡ 0.5021‡ 0.65
Top-level 0.4513‡ 0.5106‡ 0.4492‡ 0.5076‡ 0.4443‡ 0.5031‡ 0.70
Most specific 0.4736‡ 0.5251‡ 0.4393‡ 0.5034‡ 0.4300‡ 0.4966‡ 0.60

Wikipedia
Baseline [29] 0.3666 0.4727 0.3666 0.4727 0.3666 0.4727 -
Along path 0.4121‡ 0.5000‡ 0.4145‡ 0.5014‡ 0.3944‡ 0.4877 0.40
Top-level 0.0963 0.2950 0.2193 0.3777 0.3666 0.4727 0.00
Most specific 0.5874‡ 0.6071‡ 0.4741‡ 0.5393‡ 0.4474‡ 0.5180‡ 0.65

YAGO
Baseline [29] 0.3076 0.4180 0.3076 0.4180 0.3076 0.4180 -
Along path 0.4325‡ 0.4904‡ 0.4453‡ 0.5041‡ 0.4313‡ 0.4879‡ 0.75
Top-level 0.4325‡ 0.4904‡ 0.3630‡ 0.4476‡ 0.3807‡ 0.4513‡ 0.85
Most specific 0.4843‡ 0.5231‡ 0.4347‡ 0.4998‡ 0.4211‡ 0.4850‡ 0.70

improves for Along path (significant for 1TT). Top-level Wikipedia types do not
contribute when using the interpolation model (λt = 0), and are rather harmful
when using either strict or soft filtering.

DBpedia and Freebase also show improvements for the ALL setting in all con-
figurations, except the strict filtering model (Figs. 5(a) and 5(b)). The improve-
ments for these smaller, shallower taxonomies are highly significant for all config-
urations in the 1TT setting (Figs. 5(e) and 5(f)). The case of YAGO is similar:
all but the strict filtering configurations improve in the ALL setting (Figs. 5(d)),
and all 1TT configurations yield highly significant improvements (Fig. 5(h)).

Comparing the results for the Top-level representation between YAGO and
Wikipedia, it is clear that the Top-level Wikipedia categories that were chosen
for enforcing taxonomic constraints are not appropriate for conveying entity type
information.

7.2 Type Representation

The second research question (RQ2) is about type representation.

– RQ2 How can one represent hierarchical entity type information for entity
retrieval?
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Fig. 5 Entity retrieval performance for all combinations of type taxonomies, type represen-
tation modes, and retrieval models. Top: all entities in the knowledge base (ALL); bottom:
only entities with types from the given type taxonomy (1TT). The red line corresponds to the
term-based baseline(s). Performance is measured by NDCG@10.

The question has a clear answer: keeping only the Most specific types in the hier-
archy provides the best performance across the board, for all configurations. This
fact is also in line with findings in past work (cf. Sect. 2). As for the other two
representations, Along path is the better performing representation. The difference
between Along path and Top-level, however, are generally small, in particular for
the smaller taxonomies, DBpedia and Freebase.

Overall, we have verified that hierarchical relationships from ancestor types
result in improved retrieval effectiveness, but simply resorting to the Most specific

type assignments in the knowledge base is the most effective way of representing
entity type information.

7.3 Type-Aware Entity Retrieval

Our third research question (RQ3) concerns the type-aware retrieval model.

– RQ3 How can one combine term-based and type-based matching for entity
retrieval?

According to the 1TT setting (Table 7), strict filtering with the Most specific type
representation is the best retrieval model for all configurations (achieving, in par-
ticular, a relative improvement of 67% in terms of NDCG@10 on DBpedia types),
significantly outperforming the baseline in all cases. This no longer holds in the
ALL setting (Table 6). The soft filtering and interpolation models perform best
for all taxonomies, with small differences between the two, depending on the type
representation. In the ALL setting, strict filtering always performs the worst and
is often even below the baseline when Along path or Top-level type representation
is used.
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Fig. 6 Retrieval performance using the interpolation model with different type weights, λt.
Top: all entities in the knowledge base (ALL); bottom: only entities with types from the
given type taxonomy (1TT). The leftmost data points (λt = 0) correspond to the term-based
baseline.

Comparing the respective λt type weights in Tables 6 and 7, it is noticeable
that the interpolation model relies more on the type component in the 1TT than
in the ALL setting. This is makes perfect sense since in the ALL setting many
entities lack type information in the knowledge base.

Note that the interpolation model has a parameter λt that controls the weight
of the type-based component. Figure 6 shows the performance of the interpola-
tion model when varying the value of λt. We observe that with the exception of
Wikipedia using the Top-level type representation, type information always im-
proves over the baseline. In the ALL setting, performances generally peak in the
0.2–0.4 range, while for 1TT it is higher, around 0.5–0.7.

7.4 Analysis

We perform a more detailed analysis of particular configurations in order to gain
a deeper understanding of each of the dimensions of entity type information. We
focus on the bottom row of bar plots in Fig. 5 (e)–(h), that is, the 1TT experimental
setting. There, as we previously explained, it is ensured that the differences we
observe are not a result of missing type assignments. Figure 7 shows, for each
of the selected configurations, the differences in NDCG@10 scores (∆NDCG@10
hereinafter) on the level of individual queries between a given configuration and
the corresponding (term-based) baseline. For the ease of visual comprehension,
queries are ordered by ∆NDCG@10. Table 8 lists specific queries with the largest
∆NDCG@10 differences, along with their “best” oracle target types (according to
the scoring function defined by Eq. 8).
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Table 8 Queries with the largest ∆NDCG@10 differences with respect to the term-based
baseline, using oracle target types and the 1TT setting.

∆ Query Best oracle target type(s)

Strict filtering, most specific, Wikipedia
+1.0 SemSearch ES-129 (“pizza populous detroit mi”) American pizza, Pizza vari-

eties
+1.0 SemSearch ES-75 (“sagemont church houston tx”) Lists of churches in the US,

Cathedrals in the US
+1.0 QALD2 te-53 (“is the ruling party in Lisbon”) Liberal-conservative parties
+1.0 SemSearch ES-104 (“bourbonnais il”) Amtrak accidents, Railway ac-

cidents in Illinois
+0.88 SemSearch ES-96 (“New England Coffee”) Whitbread divisions and sub-

sidiaries

Strict filtering, top-level, Wikipedia
+0.34 SemSearch ES-99 (“University of York”) Geography, Social sciences
+0.33 INEX XER-63 (“Hugo awarded best novels”) Social sciences, Arts
+0.29 SemSearch ES-137 (“steak express”) Social sciences, Philosophy
+0.26 QALD2 tr-91 (“organizations were founded in 1950”) Social sciences, Society
+0.25 INEX LD-20120131 (“vietnam travel national park”) Social sciences, Geography
-1.0 QALD2 te-76 (“List the children of Margaret

Thatcher”)
Social sciences, Philosophy

-1.0 SemSearch ES-111 (“eagle rock ca”) Society, History
-1.0 QALD2 tr-13 (“classis does the Millepede belong to”) Social sciences, Nature
-1.0 QALD2 te-90 (“is the residence of the prime minister

of Spain”)
Arts, Philosophy

-1.0 SemSearch ES-107 (“concord steel”) Social sciences, Philosophy

Interpolation, most specific, Wikipedia
+1.0 SemSearch ES-129 (“pizza populous detroit mi”) American pizza
+1.0 QALD2 te-53 (“is the ruling party in Lisbon”) Liberal-conservative parties
+0.88 SemSearch ES-124 (“motorola bluetooth hs850”) Bluetooth, Electronics compa-

nies of the US
+0.8 SemSearch ES-50 (“laura steele bob and tom”) American comedy radio pro-

grams
+0.79 SemSearch ES-96 (“New England Coffee”) Whitbread divisions and sub-

sidiaries
-0.47 SemSearch ES-22 (“city of charlotte”) City councils in the US, Years

in North Carolina
-0.48 SemSearch ES-98 (“University of Texas at Austin”) Association of American Uni-

versities
-0.48 QALD2 tr-54 (“was the wife of US president Lin-

coln”)
First Ladies of the US, Lincoln
family

-0.49 TREC Entity-10 (“Campuses of Indiana University”) Joint Venture Schools
-0.52 QALD2 tr-16 (“the capitals of all countries in

Africa”)
Capitals in Africa

Interpolation, most specific, DBpedia
+1.0 SemSearch ES-129 (“pizza populous detroit mi”) Food
+1.0 QALD2 te-43 (“all breeds of the German Shepherd

dog”)
Book

+1.0 INEX LD-2012309 (“residents small island city state
Malay Peninsula Chinese”)

Settlement

+1.0 QALD2 te-55 (“Greek goddesses dwelt on Mount
Olympus”)

Mythological Figure

+0.76 QALD2 te-42 (“is the husband of Amanda Palmer”) Writer
-0.4 QALD2 te-27 (“Sean Parnell is the governor of US

state”)
Office Holder

-0.49 QALD2 tr-54 (“was the wife of US president Lin-
coln”)

Office Holder

-0.5 QALD2 tr-4 (“river does the Brooklyn Bridge cross”) Bridge
-0.57 QALD2 te-90 (“is the residence of the prime minister

of Spain”)
Building

-0.65 SemSearch ES-89 (“university of north dakota”) University
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Fig. 7 Differences in NDCG@10 per query between a given type-aware entity retrieval config-
uration and its corresponding (term-based) baseline, using only entities with types from that
type taxonomy (1TT).

Table 9 Queries with the largest average ∆NDCG@10 improvements across all type tax-
onomies, using most specific types with strict filtering and the 1TT setting. Differences greater
than 0.05 are shown in green.

Avg. ∆ Query ∆NDCG@10
across DBp- Free- Wiki- YAGO
taxos. edia base pedia

+1.0 SemSearch ES-129 (“pizza populous detroit
mi”)

+1.0 +1.0 +1.0 +1.0

+0.69 SemSearch ES-4 (“NAACP Image Awards”) +0.79 +0.56 +0.85 +0.56
+0.68 SemSearch ES-115 (“goodwill of michigan”) +0.64 +0.64 +0.63 +0.78
+0.6 INEX XER-140 (“Airports in Germany”) +0.59 +0.59 +0.57 +0.63
+0.59 QALD2 tr-42 (“are the official languages of the

Philippines”)
+1.0 +0.49 +0.5 +0.36

+0.59 SemSearch ES-78 (“sharp pc”) +0.65 +0.33 +0.71 +0.65
+0.58 SemSearch ES-1 (“44 magnum hunting”) +0.32 +1.0 +0.47 +0.52
+0.58 SemSearch ES-124 (“motorola bluetooth

hs850”)
+0.03 +0.7 +0.65 +0.92

+0.57 SemSearch ES-50 (“laura steele bob and tom”) +0.49 +0.67 +0.8 +0.32
+0.56 QALD2 te-60 (“a list of all lakes in Denmark”) +0.54 +0.51 +0.61 +0.57

The best performing configuration uses Most specific Wikipedia types with the
strict filtering model (Fig. 5 (g)). As it can be observed in Fig. 7 (a), most of the
queries are improved while none of them are hurt. The queries with the highest
∆NDCG@10 are mostly named entity queries, with a very suitable best oracle
target type to be used as strict filter (first block of Table 8).

By changing type representation from Most specific to Top-level, the perfor-
mance for Wikipedia types with strict filtering goes from best to worst (Fig. 5 (g)).
As we can see in Fig. 7 (b), the vast majority of queries is negatively affected.
Queries that are most harmed are natural language queries like “classis does the
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Millepede belong to” and “is the residence of the prime minister of Spain” (sec-
ond block of Table 8). For queries that are improved, we observe that the best
oracle target types are high-level and with a large descendants subtree like “Social
sciences,” corresponding more to broad knowledge domains that result in more
permeable filters.

Let us now observe the results after changing another dimension of the best
performing setting: Most specific Wikipedia types now with the interpolation model
(Fig. 5 (g)). Figure 7 (c) shows the distribution of ∆NDCG@10 values. Four out
of the 5 most improved queries are named entity queries (third block of Table 8),
whereas the most hurt queries belong to diverse categories. The λt parameter is
set here to 0.65, which means that the type component is given slightly more
weight than the term component. Yet, mean performance is much lower for the
interpolation model than for strict filtering (0.4474 vs. 0.5874).

Finally, from this last configuration (interpolation with Most specific Wikipedia
types), we compare against the configuration where the third dimension, type tax-
onomy, is changed to a smaller, shallower taxonomy like DBpedia (Fig. 5(e)). The
best performing λt is set here to 0.55, which represents a balanced interpolation.
The ∆NDCG@10 values in Fig. 7 (d) are positive for a large proportion of queries.
Around 100 queries are unaffected, while a few are moderately negatively impacted
by the type-aware model. It is difficult to identify any patterns here (last block
of Table 8), apart from noting that most queries with the largest impact (either
positive or negative) are natural language queries. Moreover, given that the DB-
pedia taxonomy has a depth of 6 levels, its shallowness has a consequence that
even Most specific types are not specific enough.

Additionally, to answer the question whether the same queries are helped/hurt
using different taxonomies, we show in Table 9 the top ten queries according to
average ∆NDCG@10 across all four taxonomies. All the queries in this configu-
ration result to have non-negative ∆NDCG@10 in every type taxonomy. We can
observe that most of the queries that are helped are named entity queries.

8 Results using Automatic Target Entity Type Identification

In the previous section, we have presented results using an idealized setting, where
target types were provided by an oracle. We now instead use the methods we
introduced Sect. 5 to automatically identify target entity types (Sect. 8.1), and
subsequently use these for type-aware entity retrieval (Sect. 8.2). In this part, we
focus only on DBpedia, for the following main reason. Both for evaluation and
for supervised learning, one needs relevance assessments for target entity types
of queries. For the two large taxonomies, human assessments are problematic;
Wikipedia is not a proper type taxonomy and is huge, while YAGO does not
provide human-readable labels for types. As we have seen in the previous section,
Freebase behaves similarly to DBpedia, but it is not particularly interesting in the
taxonomical sense, given that it has only two levels. This leaves us with DBpedia.
The DBpedia Ontology is small enough to be manageable by humans, and is a
proper taxonomy. For the details on the construction of the test collection for
target type identification, we refer back to Sect. 6.6.
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Table 10 Target entity type identification performance, measured in terms of NDCG@1 and
NDCG@5.

Method NDCG@1 NDCG@5

EC, BM25 (k = 10) 0.1335 0.2657
EC, LM (k = 10) 0.1039 0.2625

TC, BM25 0.2305 0.3216
TC, LM 0.2508 0.3757

LTR 0.4420 0.5968

We note that none of the elements of our our supervised learning approach are
specific to this taxonomy, and our methods for target entity type identification
can be applied on top of any type taxonomy.

8.1 Target Entity Type Identification

The research question we seek to answer concerns the automatic identification of
entity types:

– RQ4 How can one automatically determine the target entity types of a query
from a type taxonomy?

First, we evaluate target entity type identification intrinsically. We follow [3] and
approach the task as a ranking problem and report on NDCG at rank positions 1
and 5. Following [15], the NIL-type labels are ignored in our experimental evalua-
tion. For the LTR method, we used 5-fold cross-validation.

Table 10 presents the evaluation results. For each of the underlying retrieval
models, BM25 and LM, we select only a single entity-centric (EC) method ac-
cording to the best performing cut-off K (here, K = 10 for both models). We
find that our supervised learning (LTR) approach significantly and substantially
outperforms all baseline methods (with p < 0.001 using a two-tailed paired t-test),
in particular, achieving an NDCG@5 score of 0.6.

8.1.1 Analysis of LTR features

We analyze the discriminative power of our features, by sorting them according to
their information gain, measured in terms of Gini importance. Table 11 presents
the resulting features order, with their respective information gains; this is also
shown as the vertical bars in Fig. 8. The top 3 features are: SIMMAX(t, q),
SIMAV G(t, q), and SIMAGGR(t, q). This underlines the effectiveness of textual
similarity, enriched with distributional semantic representations, measured be-
tween the query and the type label. Then, we incrementally add features, one
by one, according to their importance and report on performance in NDCG@5
metric in Table 11 (and also shown as the line plot in Fig. 8). In each iteration,
we set the m parameter of the Random Forests algorithm to 10% of the size of the
feature set.
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Table 11 Performance of our LTR approach, measured by NDCG@5, after incrementally
adding features proportional to their information gain, measured by Gini score.

Added feature NDCG@5 Gain

SIMMAX(t, q) 0.3672 0.1138
+ SIMAV G(t, q) 0.3863 0.1097
+ SIMAGGR(t, q) 0.4186 0.1045
+ ENTITIES(t) 0.4888 0.0479
+ ECLM,5 0.5551 0.0461
+ ECLM,10 0.5519 0.0444
+ ECBM25,100 0.5555 0.0443
+ ECBM25,50 0.5700 0.0417
+ TCBM25(t, q) 0.5644 0.0416
+ ECBM25,20 0.5757 0.0385
+ ECLM,20 0.5661 0.0385
+ ECLM,50 0.5782 0.0371
+ CHILDREN(t) 0.5905 0.0362
+ ECBM25,10 0.5856 0.0340
+ SIBLINGS(t) 0.5868 0.0326
+ ECLM,100 0.5882 0.0307
+ IDFSUM(t) 0.5992 0.0301
+ ECBM25,5 0.6003 0.0276
+ IDFAV G(t) 0.5924 0.0240
+ DEPTH(t) 0.5983 0.0190
+ JNOUNS(t, q) 0.5898 0.0185
+ JTERMS1(t, q) 0.5944 0.0178
+ LENGTH(t) 0.5967 0.0126
+ TCLM (t, q) 0.6001 0.0078
+ JTERMS2(t, q) 0.5980 0.0008

8.2 Type-Aware Entity Retrieval

Next, we turn to extrinsic evaluation of the automatically identified target types,
by using them for ad hoc entity retrieval (that is, our end-to-end task):

– RQ5 How does type-aware entity retrieval perform using automatic target
entity type identification, compared to an “oracle” setting?

In this section, we present evaluation results for all combinations of retrieval mod-
els, type representation modes, and target entity type identification models. We
refer to the latter models simply as identification models when discussing the re-
sults. We then use the term configuration now to refer to a particular combination
of retrieval model, type representation, and identification model. Throughout this
section, we will focus on the 1TT setting.

Table 12 shows the results for all configurations. We also present results using
the target type labels provided by the human assessors as target entity types,
referred as Oracle 2. Additionally, we report on our original oracle as well (which
uses the type assignments of relevant results), referred to as Oracle 1. Again, our
main evaluation metric is NDCG@10, and we also report on NDCG@100. The
NDCG@10 scores are also plotted in Fig. 9 for an easier visual inspection, with
the red line corresponding to the term-based baseline.

For the strict filtering model, we introduce a cut-off parameter k. This param-
eter controls how many of the highest ranked types we consider as target types.
Clearly, that the larger the cut-off value k, the more lenient the filtering gets.
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Fig. 8 Performance of our LTR approach, measured by NDCG@5, when incrementally adding
features according to their information gain, measured by Gini score.
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Fig. 9 Entity retrieval performance for all combinations of retrieval models and type rep-
resentation modes, using automatically identified target types from DBpedia. The red line
corresponds to the term-based baseline. Performance is measured by NDCG@10.

Hence, we perform a sweep over the possible cut-offs k ∈ {5, 10, 15, . . . , 100} to cal-
culate P (qt|e), and use the best performing setting when comparing against other
approaches.

8.2.1 Type Representation

We now revisit our second research question (RQ2) about type representation,
and answer it for automatically identified target entity types. We observe that for
all methods, Along path and Top-level representations provide better performance
compared to the Most specific representation. The difference between these rep-
resentations is small, which is similar to our observations using oracle types (cf.
Sect. 7.2). The Most specific representation brings significant improvements only
for the LTR method, which is the top performing method in Table 10. Overall, our
results show that when target entity types are identified automatically, using hier-
archical relationships from ancestor types is the most effective way of representing
entity type information; keeping only the most specific types is helpful only when
an accurate target entity type identification method is employed.
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Table 12 Entity retrieval performance using automatically identified target types from DB-
pedia. λt and k are the best empirically found interpolation and strict filtering parameters,
respectively. For reference comparison, the results using human annotated target type collec-
tion (“Oracle 2”) and the original “Oracle 1”(cf. Sect. 6.2) are also included. Performance
is measured in terms of NDCG@10 and NDCG@100. Statistical significance, tested using a
two-tailed paired t-test at p < 0.05 and p < 0.001, is denoted by † and ‡, respectively.

Model
Strict filtering Soft filtering Interpolation

@10 @100 k @10 @100 @10 @100 λt

Baseline [29] 0.3036 0.4119 - 0.3036 0.4119 0.3036 0.4119 -

Along path
EC, BM25 0.3501‡ 0.4048 65 0.3210† 0.4154 0.3214† 0.4204‡ 0.30
TC, LM 0.4304‡ 0.5043‡ 20 0.2678 0.3805 0.3066 0.4116 0.10
LTR 0.4378‡ 0.5151‡ 20 0.2988 0.4029 0.3126† 0.4150 0.15
Oracle 2 0.4245‡ 0.4797‡ - 0.3638 0.4406‡ 0.3587‡ 0.4384‡ 0.40
Oracle 1 0.4600‡ 0.5079‡ - 0.4353‡ 0.4894‡ 0.4172‡ 0.4746‡ 0.65

Top-level
EC, BM25 0.3501‡ 0.4048 65 0.3348† 0.4251† 0.3304 0.4226‡ 0.50
TC, LM 0.4295‡ 0.5038‡ 65 0.3254 0.4159 0.3313 0.4228 0.55
LTR 0.4371‡ 0.5157‡ 5 0.3705‡ 0.4453‡ 0.3748‡ 0.4460‡ 0.80
Oracle 2 0.4245‡ 0.4797‡ - 0.3791‡ 0.4477‡ 0.3732‡ 0.4430‡ 0.60
Oracle 1 0.4600‡ 0.5079‡ - 0.4196‡ 0.4779‡ 0.4141‡ 0.4725‡ 0.70

Most specific
EC, BM25 0.3075 0.3350 65 0.3048 0.4038 0.3119 0.4159 0.15
TC, LM 0.3078 0.3352 65 0.2274 0.3500 0.3036 0.4119 0.00
LTR 0.3880‡ 0.4367† 45 0.2997 0.3980 0.3161 0.4159 0.20
Oracle 2 0.3064 0.4009 - 0.2792 0.3809 0.3185† 0.4176 0.15
Oracle 1 0.5092‡ 0.5393‡ - 0.4309‡ 0.4864‡ 0.4075‡ 0.4696‡ 0.55

8.2.2 Type-Aware Entity Retrieval

Revisiting our third research question (RQ3) about type-aware retrieval model,
we observe that strict filtering achieves the best performance among all configura-
tions, and the best results are obtained when it is combined with LTR identification
model. Specifically, by using this retrieval model with the Along path represen-
tation, we can outperform the text-only baseline by 44% in terms of NDCG@10.
The soft filtering and interpolation models perform best when used with Top-level

representation, significantly outperforming the baseline for LTR model. Similar to
the oracle setting for 1TT (Table 7), the λt type weight is the highest for Top-level

representation, showing that the type component contribution to the interpolation
model is high in this configuration.

8.2.3 Target Entity Type Identification Method

The top row of Fig. 10 shows the performance of interpolation model, when vary-
ing the value of λt parameter. We observe that assigning high weights (i.e., > 0.2)
to type-based information is harmful for the Most specific and Along path repre-
sentations. On the other hand, when using Top-level representation, the retrieval
performance improves until it reaches a peak (ranging between 0.5 to 0.8), and
then it gradually decreases.
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Fig. 10 Retrieval performance using automatically identified target types from DBpedia. Top:
interpolation model with different type weights, λt; bottom: strict filtering model with different
ranking cutoffs k. The leftmost data points (λt = 0) correspond to the term-based baseline.
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Fig. 11 Entity retrieval performance per query category (cf. Table 4) for the strict filtering
(Left) and soft filtering (Right) retrieval models, using automatically identified top-level target
types from DBpedia. The red line corresponds to the term-based baseline. Performance is
measured by NDCG@10.

The bottom row of Fig. 10 presents the retrieval performance while varying
the cut-off value k. We find that retrieval performance for the soft filtering model
plateaus quickly by increasing the number of ranked types, especially when using
the LTR model. This verifies that an effective target entity type identification
method, returning relevant types at top ranks, can bring considerable retrieval
improvements using the strict filtering retrieval model.

In order to better understand the effects of automatic target type identifica-
tion, we break down entity retrieval results into the four query categories present
in the DBpedia-Entity v2 collection (cf. Table 4). Figure 11 shows retrieval per-
formance per query category for each of the two filtering retrieval models using
top-level DBpedia types. We find that type-aware retrieval using the LTR method
significantly and consistently outperforms the term-based baseline for all query
categories. Moreover, target types identified by our LTR method yield better per-
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Fig. 12 Differences in NDCG@10 per query between type-aware entity retrieval and its corre-
sponding (term-based) baseline, using the strict filtering model with top-level DBpedia target
types automatically detected by LTR, grouped by query categories (cf. Table 4).

formance than human type annotations, for 3 out of the 4 categories using strict
filtering, and for QALD2 (natural language) queries in case of soft filtering.

Furthermore, we conduct an analysis at the query level for each of these query
categories. It can be seen in Fig. 12 that every category exhibits a similar dis-
tribution, with all ∆NDCG@10 values being positive. Specially, the ListSearch
category has the largest proportion of improved queries as well as the largest dif-
ferences. Finally, Table 13 lists queries with the largest ∆NDCG@10 differences,
either positive or negative, along with their respective types using automatic de-
tection (LTR) and human annotators (Oracle 2). Comparing with the top-level
ancestor(s) of the target types provided by the human oracle, it is clear that in
most of the cases the set of LTR-detected query types contains one or more types
than the oracle. The additional type(s) relax the filtering criterion by allowing
some non-relevant entities to be kept on the ranking and then hurting the per-
formance. Particularly, when the additional type is Agent, the one with largest
coverage in the knowledge base, it potentially introduces many entities including
all persons and organizations. In the other hand, the positively affected queries
result to have more target types detected by LTR. The more lenient filtering given
by the additional type(s) allows to retain relevant entities, then outperforming the
contributions of the human oracle target types. The QALD2 category exhibits the
distribution of ∆NDCG@10 differences where LTR-detected target types perform
the best in comparison with the human oracle. This fact is in line with our observa-
tions in Sect. 8.1, since the most important LTR features, the continuous semantic
representations, are more effective in these longer, natural language queries.
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9 Conclusions

In this paper we have furthered our understanding on the usage of target type
information for entity retrieval over structured data sources. A main contribution
of this work is the systematic comparison of four well-known type taxonomies
(DBpedia, Freebase, Wikipedia, and YAGO) across three dimensions of interest:
the representation of hierarchical entity type information, the way to combine
term-based and type-based information, and the impact of choosing a particular
type taxonomy. Using an idealized “oracle” setting for identifying the target entity
types, we have found that type information can significantly and substantially
improve a strong text-only entity retrieval baseline.

For realistic scenarios, where the target entity types are not provided, we have
developed methods for identifying target entity types automatically. Our exper-
iments have shown that using automatic target entity types not only improves
entity retrieval performance, but also brings the same, or even higher, level of
performance achievable by human target type annotations.

We identify the following directions for future work. First, we plan to detect
NIL-types for queries that cannot be assigned any type. Second, we observed that
performance is hindered by missing entity type assignments. We aim to address this
issue by automatically identifying (missing) entity types in knowledge bases. Third,
when addressing the task of automatic target type identification, our analysis has
suggested that using a subset of the full feature set may be sufficient (cf. Fig. 8). As
a follow-up, we wish to investigate whether the same observation would also hold
when using the detected types for the end-to-end entity ranking task. Fourth, as we
have noted in Sect. 3.2, the particular term-based component we have employed as
our baseline is not the focus of this work, and any other approach could be plugged
in instead. Another line of further investigation is then to carry out evaluations
analogous to the ones conducted here, but utilizing a different baseline (possibly
a non-text-only method, e.g., [17, 19]). Finally, we plan to investigate continuous
representations of text and type information, and their integration (e.g., recent
work on mixture of text and structural graph embeddings [20, 40, 46]), for entity
retrieval.
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Table 13 Queries with the largest ∆NDCG@10 differences, using the strict filtering model
with top-level DBpedia target types automatically detected by the LTR method, in comparison
with target types from human annotators (Oracle 2), grouped per query category. Respective
best target type(s), assigned by both the automatic detector and the human annotators, are
also shown.

∆ Query Best target type(s)
LTR Oracle 2

Strict filtering, top-level, INEX LD
+1.0 INEX LD-2012335 (“US president authorise nu-

clear weapons against Japan”)
Agent, Device,
Event

Agent

+0.55 INEX LD-20120312 (“tango culture countries”) Place, Topical
Concept

Place

+0.5 INEX LD-20120322 (“tango music instruments”) Topical Con-
cept, Agent,
Work

Work

+0.38 INEX LD-2010057 (“Einstein Relativity theory”) Agent, Work,
Place

Work

+0.32 INEX LD-20120122 (“vietnamese food blog”) Food, Work,
Agent

Work

-0.18 INEX LD-2012369 (“most famous civic military
airports”)

Place, Agent,
Work

Place

-0.19 INEX LD-2012347 (“seat Florida country Dade”) Place, Agent Place
-0.23 INEX LD-20120311 (“tango culture movies”) Work, Agent,

Topical Concept
Work

-0.4 INEX LD-2010043 (“List of films from the surre-
alist category”)

Work, Agent Work

-0.57 INEX LD-2010004 (“Indian food”) Food, Agent,
Place

Food

Strict filtering, top-level, ListSearch
+0.52 INEX XER-96 (“Pure object oriented program-

ing languages”)
Work, Agent -

+0.35 SemSearch LS-7 (“Branches of the US military”) Agent, Place Place
+0.32 INEX XER-99 (“Computer systems that have a

recursive acronym for the name”)
Work, Device,
Agent

Device

+0.29 INEX XER-125 (“countries have won the FIFA
world cup”)

Event, Place,
Agent

Place

+0.26 INEX XER-121 (“US presidents since 1960”) Agent, Event Agent
-0.27 SemSearch LS-13 (“five great epics of Tamil lit-

erature”)
Work, Agent,
Topical Concept

Work

-0.28 SemSearch LS-49 (“invented the python pro-
gramming language”)

Work, Agent,
Device

Agent

-0.41 SemSearch LS-3 (“astronauts landed on the
Moon”)

Agent, Place Agent

-0.63 SemSearch LS-14 (“gods dwelt on Mount Olym-
pus”)

Agent, Place Agent

-0.64 TREC Entity-5 (“Products of Medimmune, Inc”) Agent, Unit Of
Work, Chemical
Substance

Chemical Sub-
stance

Strict filtering, top-level, QALD2
+1.0 QALD2 tr-42 (“are the official languages of the

Philippines”)
Place, Agent -

+0.7 QALD2 te-98 (“country does the creator of Miffy
come from”)

Place, Agent,
Work

Place

+0.63 QALD2 te-43 (“all breeds of the German Shep-
herd dog”)

Agent, Species Species

+0.63 QALD2 te-89 (“In city was the former Dutch
queen Juliana buried”)

Agent, Species Place

+0.63 QALD2 te-97 (“painted The Storm on the Sea of
Galilee”)

Place, Work,
Agent

Agent

-0.18 QALD2 te-17 (“all cars that are produced in Ger-
many”)

Mean Of Trans-
portation,
Work, Agent

Mean Of Trans-
portation

-0.18 QALD2 tr-24 (“mountain is the highest after the
Annapurna”)

Place, Agent Place

-0.22 QALD2 te-100 (“produces Orangina”) Agent, Food,
Work

Agent

-0.28 QALD2 te-63 (“all Argentine films”) Work, Agent Work
-0.33 QALD2 te-40 (“List all boardgames by GMT”) Agent, Activity,

Event
Activity

Strict filtering, top-level, SemSearch ES
+1.0 SemSearch ES-3 (“Bookwork”) Agent, Place -
+0.74 SemSearch ES-26 (“disney orlando”) Place, Agent Place
+0.42 SemSearch ES-41 (“joan of arc”) Agent, Place,

Work
Agent

+0.39 SemSearch ES-18 (“canasta cards”) Activity, Work Activity
+0.34 SemSearch ES-80 (“sonny and cher”) Work, Agent Agent
-0.37 SemSearch ES-67 (“ovguide movies”) Work, Agent Work
-0.39 SemSearch ES-79 (“shobana masala”) Agent, Work,

Food
Agent

-0.41 SemSearch ES-125 (“nokia e73”) Device, Place,
Work

Device

-0.43 SemSearch ES-58 (“mason ohio”) Agent, Place Place
-0.48 SemSearch ES-4 (“NAACP Image Awards”) Award, Agent,

Work
Award
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21. Jämsen, J., Näppilä, T., Arvola, P.: Entity ranking based on category expan-
sion. In: Focused Access to XML Documents, 7th International Workshop of
the Initiative for the Evaluation of XML Retrieval, INEX ’08, pp. 264–278
(2008)

22. Kaptein, R., Kamps, J.: Finding entities in Wikipedia using links and cate-
gories. In: Advances in Focused Retrieval, 7th International Workshop of the
Initiative for the Evaluation of XML Retrieval, INEX ’09, pp. 273–279 (2009)

23. Kaptein, R., Kamps, J.: Exploiting the category structure of Wikipedia for
entity ranking. Artificial Intelligence 194, 111–129 (2013)

24. Kaptein, R., Serdyukov, P., De Vries, A.P., Kamps, J.: Entity ranking us-
ing Wikipedia as a pivot. In: Proceedings of the 19th ACM Conference on
Information and Knowledge Management, CIKM ’10, pp. 69–78 (2010)

25. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-
scale, multilingual knowledge base extracted from Wikipedia. Semantic Web
6(2), 167–195 (2015)

26. Lin, T., Mausam, Etzioni, O.: No noun phrase left behind: Detecting and
typing unlinkable entities. In: Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Nat-
ural Language Learning, EMNLP-CoNLL ’12, pp. 893–903 (2012)

27. Ling, X., Weld, D.S.: Fine-grained entity recognition. In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, AAAI ’12, pp. 94–
100 (2012)

28. Lopez, V., Unger, C., Cimiano, P., Motta, E.: Evaluating question answering
over linked data. Web Semantics: Science, Services and Agents on the World
Wide Web 21, 3–13 (2013)

29. Metzler, D., Croft, W.B.: A Markov Random Field model for term dependen-
cies. In: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, SIGIR ’05, pp. 472–479.
ACM (2005)



Title Suppressed Due to Excessive Length 37

30. Mika, P.: Entity Search on the Web. In: Proceedings of the 22nd International
World Wide Web Conference, WWW ’13, pp. 1231–1232 (2013)

31. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed
representations of words and phrases and their compositionality. In: Advances
in Neural Information Processing Systems 26: Proceedings of the 27th Annual
Conference on Neural Information Processing Systems, NIPS ’13, pp. 3111–
3119 (2013)

32. Nakashole, N., Tylenda, T., Weikum, G.: Fine-grained semantic typing of
emerging entities. In: Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics, Volume 1: Long Papers, ACL ’13,
pp. 1488–1497 (2013)

33. Neumayer, R., Balog, K., Nørv̊ag, K.: On the modeling of entities for ad-hoc
entity search in the web of data. In: Advances in Information Retrieval -
Proceedings of the 34th European Conference on IR Research, ECIR ’12, pp.
133–145 (2012)

34. Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Type inference
through the analysis of Wikipedia links. In: Proceedings of Workshop on
Linked Data on the Web (LDOW), WWW ’12 (2012)

35. Pehcevski, J., Thom, J.A., Vercoustre, A.M., Naumovski, V.: Entity ranking
in Wikipedia: Utilising categories, links and topic difficulty prediction. Infor-
mation Retrieval 13(5), 568–600 (2010)

36. Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data.
In: Proceedings of the 19th International World Wide Web Conference, WWW
’10, pp. 771–780 (2010)

37. Rahman, A., Ng, V.: Inducing fine-grained semantic classes via hierarchical
and collective classification. In: Proceedings of the 23rd International Confer-
ence on Computational Linguistics, COLING ’10, pp. 931–939 (2010)

38. Raviv, H., Carmel, D., Kurland, O.: A ranking framework for entity oriented
search using Markov Random Fields. In: Proceedings of the 1st Joint Inter-
national Workshop on Entity-Oriented and Semantic Search, JIWES ’12, pp.
1:1–1:6 (2012)

39. Sawant, U., Chakrabarti, S.: Learning joint query interpretation and response
ranking. In: Proceedings of the 22nd International World Wide Web Confer-
ence, WWW ’13, pp. 1099–1109 (2013)

40. Subramanian, S., Chakrabarti, S.: New embedded representations and eval-
uation protocols for inferring transitive relations. In: The 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval,
SIGIR ’18, pp. 1037–1040 (2018)

41. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A core of semantic knowl-
edge. In: Proceedings of the 16th International World Wide Web Conference,
WWW ’07, pp. 697–706 (2007)

42. Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P., Aberer, K.:
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